
Report on two problems in Arabic script handling in MS Word that severely hamper more sophisticated
Arabic script OpenType fonts. Prepared by John Hudson, Tiro Typeworks, October 2009.

Problem 1 : diacritic display and colouring.
Word provides an option to turn off display of diacritics in Arabic text or to apply a distinct colour to
diacritic marks. Since colouring of diacritics at the character level would disrupt OpenType Layout and
hence Arabic script shaping, it is applied after layout and diacritics are identified not by their character
encoding but by their identification as marks in the font GDEF table. The problem with this approach is
that there is no way to distinguish different kinds of marks in a font, and hence all marks in the GDEF
table are treated as if they are diacritics. In some Arabic fonts, particularly those in nastaliq and related
styles, the dots that form part of the identity of the letter are decomposed and positioned as marks;
this is necessary because the position of the dots relative to the letter shape is not consistent but varies
contextually. Since the decomposed dots function as marks, they need to be classed as marks in the
GDEF table, which means that Word ends up treating them as if they were diacritics: the dots disappear
if the display diacritics option is disabled by the user, or assume a colour different from the letter to
which they belong if diacritics are distinctively coloured.

The block of text below is set in Microsoft’s new Urdu Typesetting nastaliq font, which is one of the
fonts that use the dot decomposition method.

���و� ان �� �� ����� � �� � ��� �
�
�� ��� ا��� �� �� �� � � ر��� ��� ��� �� �� � �� � � �� ان ��� �� ��� �� �� � ��� وا�� د

� , ���ر�
�
��� � اور ���ن والا �� ����ر�� ��� ��� ر �� ��

�� ا��� �� ان ��وہ �� اس۔ �� �� �� اس ��

��� �� �� � �ار ����ن ��� � �ا�� ا������ �� ��� � �و��
�
� �

�
�� �� � ��� ���۔ �� �� ������ ��س �� ��� ا�� ا��� �� �����

�� دو�� ��� ��� �� �� �� � �� �� �� ان۔ �� �� �� � ا�� �� �� �� � ��س وہ اور �� �رو� �� �������� ا�� ������ �� ���

� ��� �� �
�
��� ��
�����۔ �� �� ���

� �� ا��
ّ
� ا� ��� �� �� �� � �� ا�� ��� ��

 ۔��

Here it is again with the diacritic display option disabled.

���و� ان �� �� ����� � �� � ��� �
�
�� ��� ا��� �� �� �� � � ر��� ��� ��� �� �� � �� � � �� ان ��� �� ��� �� �� � ��� وا�� د

� , ���ر�
�
��� � اور ���ن والا �� ����ر�� ��� ��� ر �� ��

�� ا��� �� ان ��وہ �� اس۔ �� �� �� اس ��

��� �� �� � �ار ����ن ��� � �ا�� ا������ �� ��� � �و��
�
� �

�
�� �� � ��� ���۔ �� �� ������ ��س �� ��� ا�� ا��� �� �����

�� دو�� ��� ��� �� �� �� � �� �� �� ان۔ �� �� �� � ا�� �� �� �� � ��س وہ اور �� �رو� �� �������� ا�� ������ �� ���

� ��� �� �
�
��� ��
�����۔ �� �� ���

� �� ا��
ّ
� ا� ��� �� �� �� � �� ا�� ��� ��

 ۔��

Arabic script handling in MS Word suffers from a couple of problems that severely hamper more
sophisticated Arabic script OpenType fonts.

Problem 1 : diacritic display and colouring.
Word provides an option to turn off display of diacritics in Arabic text or to apply a distinct colour to
diacritic marks. Since colouring of diacritics at the character level would disrupt OpenType Layout and
hence Arabic script shaping, it is applied after layout and diacritics are identified not by their character
encoding but by their identification as marks in the font GDEF table. The problem with this approach is
that there is no way to distinguish different kinds of marks in a font, and hence all marks in the GDEF
table are treated as if they are diacritics. In some Arabic fonts, particularly those in nastaliq and related
styles, the dots that form part of the identity of the letter are decomposed and positioned as marks;
this is necessary because the position of the dots relative to the letter shape is not consistent but varies
contextually. Since the decomposed dots function as marks, they need to be classed as marks in the
GDEF table, which means that Word ends up treating them as if they were diacritics: the dots disappear
if the display diacritics option is disabled by the user, or assume a colour different from the letter to
which they belong if diacritics are distinctively coloured.

The block of text below is set in Microsoft’s new Urdu Typesetting nastaliq font, which is one of the
fonts that use the dot decomposition method. N

� �و� ان � �� ���� � � � �� �

�� � � ��� ا� � � � � ر��� �� �� �� � � � � � �� ان �� � �� � �� � �� وا�� د

� , ���ر�

��� � اور ���ن والا � � ��ر�� �� ��� ر � ��

� �� ان ��وہ �� اس۔ � �� ا� � �� اس �

��� � � � �ار � ��ن �� � �ا�� ا��� �� � �� � �و�

� �

�� � � ��� � �۔ � � � �� � ��س � � �� � �� ��� ا� ا�

�� دو�� �� � � � � �� � � �� �� ان۔ � � � � ا� � �� � � ��س وہ اور � �رو� �� � �� ��� ا� ��� � �� ���

� �� � �

��� ��

� � �۔ � � � �
� �� ا�

� ا� �� �� � � � �� ا� �� ��

 ۔�

Here it is again with the diacritic display option disabled.

� �و� ان � �� ���� � � � �� �

�� � � ��� ا� � � � � ر��� �� �� �� � � � � � �� ان �� � �� � �� � �� وا�� د

� , ���ر�

��� � اور ���ن والا � � ��ر�� �� ��� ر � ��

� �� ان ��وہ �� اس۔ � �� ا� � �� اس �

��� � � � �ار � ��ن �� � �ا�� ا��� �� � �� � �و�

� �

�� � � ��� � �۔ � � � �� � ��س � � �� � �� ��� ا� ا�

�� دو�� �� � � � � �� � � �� �� ان۔ � � � � ا� � �� � � ��س وہ اور � �رو� �� � �� ��� ا� ��� � �� ���

� �� � �

��� ��

� � �۔ � � � �
� �� ا�

� ا� �� �� � � � �� ا� �� ��

 ۔�

And here with diacritics distinctively coloured.

� �و� ان � � � �� ���� � � � � � �� � �

�� �
�
 � � ��� � ا� � � � � � � ر��� � �� �� � �� � � � � � � � �� ان � �� � �� � � � � �� � �� وا�� � د

� , ���ر�

��� �
�

� اور ���ن والا � � ��ر�� � �� ��� � ر � � ��
 �
� �� ان ��وہ �� اس۔ � �� � ا� � � �� اس � �

��� � � � � � �ار � � ��ن � �� � �ا�� � ا��� �� � � �� � � �و�

� �
�

 �

�� �
�
 � � ��� � � �۔ � � � � � �� � ��س � � � � � �� � � � �� ��� � ا� � ا�

�� دو�� �� � � � � � � � � �� � � �� �� ان۔ � � � � � � � � � ا� � � �� � � � ��س وہ اور � � �رو� �� � � � �� ��� � ا� ��� � � � �� ���

� �� � � � �

���
�

 ��
 �
� � �۔ � � � � � � �

� ا�
� �� �

 ا�
ّ

 � �� � �� � � � �� � � � ا� �� � ��
 �
 ۔ �

And here with diacritics distinctively coloured.

���و� ان �� �� ����� � �� � ��� �
�
�� ��� ا��� �� �� �� � � ر��� ��� ��� �� �� � �� � � �� ان ��� �� ��� �� �� � ��� وا�� د

� , ���ر�
�
��� � اور ���ن والا �� ����ر�� ��� ��� ر �� ��

�� ا��� �� ان ��وہ �� اس۔ �� �� �� اس ��

��� �� �� � �ار ����ن ��� � �ا�� ا������ �� ��� � �و��
�
� �

�
�� �� � ��� ���۔ �� �� ������ ��س �� ��� ا�� ا��� �� �����

�� دو�� ��� ��� �� �� �� � �� �� �� ان۔ �� �� �� � ا�� �� �� �� � ��س وہ اور �� �رو� �� �������� ا�� ������ �� ���

� ��� �� �
�
��� ��
�����۔ �� �� ���

� �� ا��
ّ
� ا� ��� �� �� �� � �� ا�� ��� ��

 ۔��

[I’ll also note that it seems to me an error that diacritic display and colouring is a global option. It should
be possible to display or not display Arabic diacritics, or to distinctively colour them, at the text
selection level or, failing that, at the paragraph level. Creating this document required three different
applications.]

There seem to me a couple of ways to fix this problem. One possibility would be to define a new version
of the OT GDEF table that provides for different categories of mark glyphs, such that glyphs
representing diacritic characters might be distinguished from marks like the Arabic dots. Along the
same lines, the GDEF table could contain specific colour class values for glyphs that should be coloured
alike; this solution might benefit scripts such as Ethiopic which have bichromatic traditions that are not
limited to marks. Obviously this would require updates to the OT spec, to fonts, and also to Word and
other applications wanting to handle display and colouring of diacritics.

Another option would be an application level fix such that, rather than relying on GDEF glyph
classification, Word would trace glyphs back through OTL lookups to find out with what character
codes they are associated, so as to be able to accurately identify actual diacritics. Note, however, that
some encoded Arabic characters might be decomposed into letter+diacritic mark for display purposes,
so care would need to be taken not to presume that any decomposition represents a letter plus non-
diacritic mark.

Problem 2 : kashida justification.
Word provides three levels of Arabic text justification using kashida (aka tatweel) insertion. It is helpful
to understand what the kashida represents, which is a stroke elongation permissible in Arabic writing.
Beginning with metal typesetting and carried over into digital typography, this elongation has typically
been handled by insertion of one or more separate kashida glyphs, a mechanism that only works
without difficulties in purely horizontal styles of Arabic type, i.e. not in any of the traditional styles of
Arabic script. It is possible, using OpenType GSUB to implement elongations via either letter variants or
insertion of non-flat connecting strokes, combined with GPOS cursive attachment positioning, as
shown in this example from new Shallaal typeface in development for the Advanced Reading
Technologies group:

 J H  H →

The kashida may be manually inserted by the user as U+0640, and generally this seems to cause no
problem in Word as this character is processed like any other Arabic character, going through full
Unicode layout to arrive correct form and positioning. Multiple kashida characters may be entered by
the user, and a font can intelligently combine these into connecting strokes of different lengths:

 J �H  � �H →  � �H →  � �H →  � �H →  � �H →  � �H →

The kashida may also be inserted automatically as part of an application’s text justification algorithm,
and this is where Word runs into trouble with non-flat Arabic script styles, because the kashida insertion
takes place after OpenType Layout, which means that neither GSUB nor GPOS are applied to these
kashidas inserted in this way. The result is a serious mess. This is what happens with the Shallaal font,
using Word’s ‘Justify Medium’ setting:

 �NKM �BW �Qـ �R �F �BـJ �BLA �Y
�ـ  Dـ� S �B �BRـ �BـJ �BAL �NـM �Hـ �B � Dـ� ـ �BA �JLA

 �Hــ �J �B �BMLA Dــ �F �B Rــ �B �BK MAD �J �BــS �B � �B �BKRــM � �B �BWــM �BK �NA �Rــ �FJ �B �Hــ �BLM� �BDــJ �B LKــ �S �B
 �Y� �B �B

T L� �J �B �H �BL �JLA LJ
�B �B YLA �HLJ �BR �FA �H �BL �JLL �H �B� �D �JLA.

All the correct OTL shaping is taking place for unjustified text, and then the kashida glyphs are being
inserted after the fact. The kashida glyphs and/or adjacent letters are not being changed to their
appropriate forms for elongation using the contextual GSUB lookups, and they are not being properly
connected using the cursive attachment GPOS lookups.

In the Urdu Typesetting font, which doesn’t seem to include a kashida glyph, the proper text shaping
is broken in numerous places, indicating that extra spacing is being applied as if there were a kashida:

��و� ان � �� �� ����� � �� � ��� �
�
�� �� �� �� ا� � �� �� � ��� �� � ر� � �� �� �� � �� � � �� ان ��� �� ��� �� ��

� ��� �� د � , ���ر� وا
�
��� � اور ���ن والا �� ��ر�� ��� �� ��� ر �� ��

 �� ان ��وہ �� اس۔ ��

�� �� ا� �� �� �� اس �� � �� �� � ���ن ��� �ار � �� �� �� ا���� � �ا ��� � �و��
�
� �

�
�� �� � ��۔ �� � ��� ��

����� � ��س �� ��� ا�� ����� �� �� �� ا� �� دو ��� �� � �� �� �� � �� � �� �� ان۔ � �� �� � ا�� �� �� �� � اور ��

��س وہ ��� ا�� �رو� �� ����� ��� ��� �� �� � � � �� �� �
�
��� ��
��۔ �� ��� �� ���

� �� ا��
ّ
� ا� ��� �� �� �� ا��

�� � ��� ��
 ۔��

I believe the only way to resolve this problem would be for Word to change the way in which it performs
kashida justification. In effect, I think this will mean applying OTL features twice to justified Arabic text:
once for unjustified text to get correct Arabic shaping and to determine where and how many kashidas
need to be inserted to justify the text, and then again after kashida insertion to correctly shape and
connect the kashidas to the letters.

…etc

