


and this has to be integrated with respect to 𝜙𝜙 from 𝜙𝜙 = 0 to 𝜙𝜙 = 2 𝜋𝜋, 
which gives  

2𝜋𝜋𝜋𝜋𝜋𝜋 sin 𝜃𝜃 𝑓𝑓′(𝑟𝑟)𝑟𝑟 𝑑𝑑𝑑𝑑,  
 
which has to be integrated from 𝜃𝜃 = 0 to 𝜃𝜃 = 𝜋𝜋. 
      Differentiating (3) we find 
 

𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎 sin 𝜃𝜃𝜃𝜃𝜃𝜃. 
 
Substituting the value of 𝑑𝑑𝑑𝑑 in (6) we obtain 
 

2𝜋𝜋𝜋𝜋𝑎𝑎𝑏𝑏 𝑓𝑓′(𝑟𝑟)𝑑𝑑𝑑𝑑, 
 
the integral of which is 
 

𝑉𝑉 = 2𝜋𝜋𝜋𝜋𝑎𝑎𝑏𝑏 {𝑓𝑓(𝑟𝑟 1) − 𝑓𝑓(𝑟𝑟)} , 
 
where 𝑟𝑟 1 is the greatest value of 𝑟𝑟, which is always 𝑎𝑎 + 𝑏𝑏, and 𝑟𝑟 is the 
least value of 𝑟𝑟, which is 𝑏𝑏𝑏𝑏𝑏   when the given point is outside the shell 
and 𝑎𝑎𝑎  𝑎𝑎 when it is within the shell. 
   If we write 𝛼𝛼 for the whole charge of the shell, and 𝑉𝑉 for its potential at 
the given point, then for a point outside the shell 
 

𝑉𝑉 = 𝛼𝛼
2𝑎𝑎𝑎𝑎 {𝑓𝑓(𝑏𝑏 + 𝑎𝑎) − 𝑓𝑓(𝑏𝑏𝑏𝑏𝑏  )}. 

 
For a point on the shell itself 
 

𝑉𝑉 = 𝛼𝛼
2𝑎𝑎 𝑓𝑓(2𝑎𝑎), 

 
and for a point inside the shell 
 

𝑉𝑉 = 𝛼𝛼
2𝑎𝑎𝑎𝑎 {𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎𝑎  𝑎𝑎)}. 

 
  We have next to determine the potentials of the two concentric spheri-
cal shells, the radii of the outer and inner shells being 𝑎𝑎, and 𝑏𝑏, and their 
charges 𝛼𝛼 and 𝛽𝛽. 
  Calling the potential of the outer shell 𝐴𝐴, and that of the inner 𝐵𝐵, we 
have by what precedes 
 

𝐴𝐴 = 𝛼𝛼
2𝑎𝑎 𝑓𝑓(2𝑎𝑎) + 𝛽𝛽

2𝑎𝑎𝑎𝑎 {𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎𝑎  𝑎𝑎)} , 
𝐵𝐵 = 𝛽𝛽

2𝑏𝑏 𝑓𝑓(2𝑏𝑏) + 𝛼𝛼
2𝑎𝑎𝑎𝑎 {𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎𝑎  𝑎𝑎)} . 

 
  In the first part of the experiment the shells communicate by the short 
wire and are both raised to the same potential, say 𝑉𝑉. 

  By putting 𝐴𝐴 = 𝐵𝐵 = 𝑉𝑉, and solving the equations (13) and (14) for 𝛽𝛽, we 
find for the charge of the inner shell 
 

𝛽𝛽 = 2𝑉𝑉𝑉𝑉 𝑏𝑏𝑏𝑏(2𝑎𝑎) − 𝑎𝑎[𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎 𝑎𝑎𝑎 )]
𝑓𝑓(2𝑎𝑎)𝑓𝑓(2𝑏𝑏) − [𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎 𝑎𝑎𝑎 )]  . 

   
  In the experiment of Cavendish, the hemispheres forming the outer 
shell were removed to a distance which we may suppose infinite, and 
discharged. The potential of the inner shell (or globe) would then  
become 

 𝐵𝐵1 = 𝛽𝛽
2𝑏𝑏 𝑓𝑓(2𝑏𝑏). 

 
  In the form of the experiment as repeated at the Cavendish Laboratory 
the outer shell was left in its place, but connected to earth, so that 𝐴𝐴 = 0. 
In this case we find for the potential of the inner globe in terms of 𝑉𝑉 
 

𝐵𝐵 = 𝑉𝑉 { − 𝑎𝑎𝑏𝑏 𝑓𝑓(𝑎𝑎 + 𝑏𝑏) − 𝑓𝑓(𝑎𝑎 𝑎𝑎𝑎 )
𝑓𝑓(2𝑎𝑎) }. 

 
74d.] Let us now assume, with Cavendish, that the law of the force is 
some inverse power of the distance, not differing much from the inverse 
square, and let us put 
 

𝜙𝜙 (𝑟𝑟) = 𝑟𝑟𝑞𝑞𝑞; 
then                  𝑓𝑓(𝑟𝑟) = 1

1−𝑞𝑞  𝑟𝑟
𝑞𝑞+1 ∗. 

 
  If we suppose 𝑞𝑞 to be small, we may expand this by the exponential 
theorem in the form 
 

𝑓𝑓(𝑟𝑟) = 
 − 𝑞𝑞  𝑟𝑟 { + 𝑞𝑞 log 𝑟𝑟 + 

.2 (𝑞𝑞 log 𝑟𝑟) + &c. } ; 
 
And if we neglect terms involving 𝑞𝑞, equations (16) and (17) become 
 

𝐵𝐵1 = 2
𝑎𝑎

𝑎𝑎 𝑎𝑎𝑎 𝑉𝑉𝑉𝑉 log 4𝑎𝑎
𝑎𝑎 − 𝑏𝑏 −

𝑎𝑎
𝑏𝑏 log𝑎𝑎 + 𝑏𝑏

𝑎𝑎 𝑎𝑎𝑎 ,  

𝐵𝐵 = 2𝑉𝑉𝑉𝑉 log 4𝑎𝑎
𝑎𝑎 − 𝑏𝑏 −

𝑎𝑎
𝑏𝑏 log𝑎𝑎 + 𝑏𝑏

𝑎𝑎 𝑎𝑎𝑎 ,  
 
from which we may determine 𝑞𝑞 in terms of the results of the experi-
ment. 
  74e.]  Laplace gave the first demonstration that no function of the dis-
tance except the inverse square satisfies the condition that a uniform 
shell exerts no force on a particle within it †. 
 

*{Strictly 𝑓𝑓(𝑟𝑟) − 𝑓𝑓(0) = 1
1−𝑞𝑞 𝑟𝑟

𝑞𝑞+1 if 𝑞𝑞 be less then unity.  
† Mec. Cel., 1.2. 
 

  




